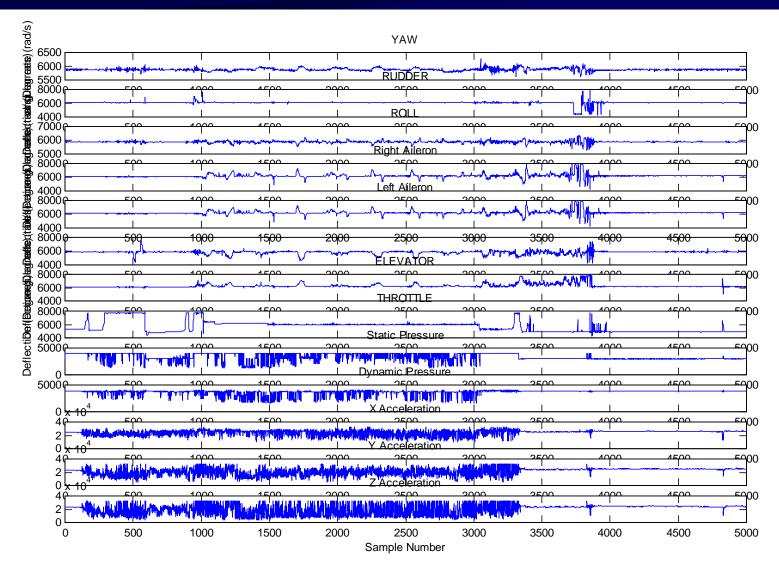
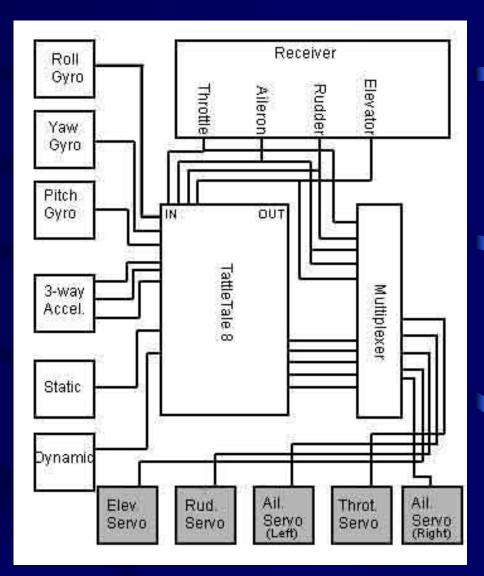
THE PHOENIX PROJECT

Coordinated Flight of Multiple Unmanned Vehicles

Michael P. Anthony & Christopher M. Gerson


Lab for Control and Automation
Princeton University
Princeton, NJ, 08544
Professor Robert Stengel

Goals


- Long Term
 - Fleet of 4 Aircraft
 - Way Point Navigation
 - Coordinated Aerobatic Maneuvers
- Short Term
 - Noise Filtration
 - Linear Control for Stabilization
 - System Upgrade

Data-Flight 1

Data Acquisition System

- FilterAccelerometers
 - Low-Pass filters
- Addition of Daughter Circuits
 - Multiplexer safety switch
 - Comparator Circuit

Low Pass Filter

- Sallem-Key Filter
 - Second Order
 - 6 Hz cutoff
- Currently Testing and Refining

Safety Switch

- Stripped Servo Motor
 - Converts Pulse Width to 1V digital on/off
 - Left Pulse Remnants
 - Eliminated by large time constant RC circuit
- Comparator Circuit
 - Converts output signal to TTL on/off
- Output to Switch Multiplexers

Safety Multiplexer

- Prevents current drain by Tattletale
 - Allows user control during Tattletale failure
- Controls Input Data to the Tattletale
 - Allows Data Collection during user control
 - Prevents Data Collection during Tattletale control
- Powered by Tattletale
 - Automatic Failure Control

Safety & Switch Multiplexer System

- Differing Power Sources Allow for 3 States
 - State 1: User Control with Tattletale Power
 - Safety Muliplexer: Allows Tattletale Data Collection
 - Switch Multiplexer: Allows User Control
 - State 2: Tattletale Control
 - Safety Muliplexer: Prevents Tattletale Data Collection
 - Switch Multiplexer: Allows Tattletale Control
 - State 3: Tattletale Failure
 - Safety Muliplexer: Prevents Tattletale Data Collection
 - Switch Multiplexer: Allows User Control

State Space System

$$|\vec{x}_{n+1} = Ax_n + B\vec{u}_n|$$

$$\vec{y}_n = C\vec{x}_n + D\vec{u}_n$$

De-coupled System

$$\dot{\vec{x}}_{long_{n+1}} = A_{long} \vec{x}_{long_n} + B_{long} \vec{u}_{long_n}$$

$$\vec{x}_{long} = \begin{bmatrix} u \\ w \\ q \\ \theta \end{bmatrix}$$

$$\vec{u}_{long} = \begin{bmatrix} \delta_e \\ \delta_{th} \end{bmatrix}$$

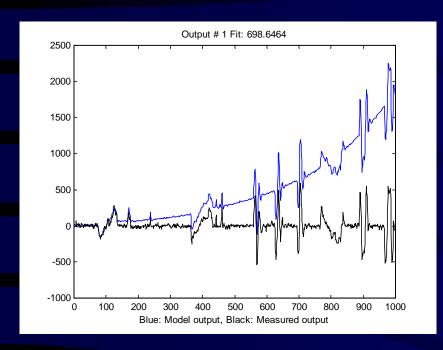
$$\vec{x}_{long} = \begin{bmatrix} u \\ w \\ q \\ \theta \end{bmatrix}$$

$$\vec{\mathbf{u}}_{\text{long}} = \begin{bmatrix} \boldsymbol{\delta}_{\mathbf{e}} \\ \boldsymbol{\delta}_{\mathbf{th}} \end{bmatrix}$$

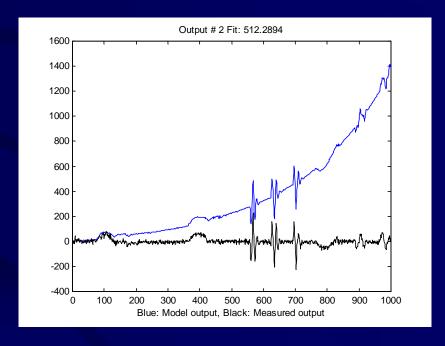
$$\dot{\vec{x}}_{lat_{n+1}} = A_{lat}\vec{x}_{lat_n} + B_{lat}\vec{u}_{lat_n}$$

$$\vec{x}_{lat} = \begin{bmatrix} v \\ r \\ p \\ \Phi \end{bmatrix}$$

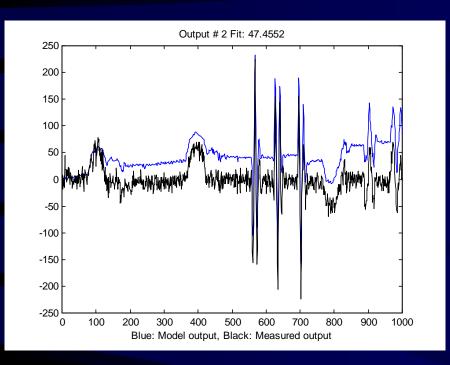
$$\vec{u}_{lat} = \begin{bmatrix} \delta_a \\ \delta_r \end{bmatrix}$$

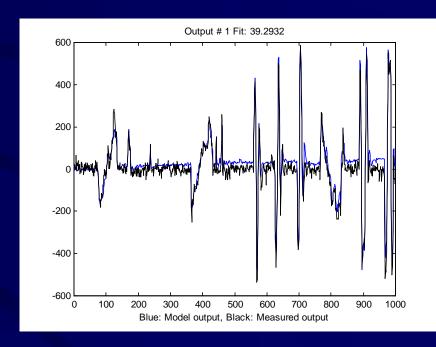

$$\vec{x}_{lat} = \begin{bmatrix} v \\ r \\ p \\ \Phi \end{bmatrix}$$

$$\vec{\mathbf{u}}_{\text{lat}} = \begin{bmatrix} \boldsymbol{\delta}_{\mathbf{a}} \\ \boldsymbol{\delta}_{\mathbf{r}} \end{bmatrix}$$

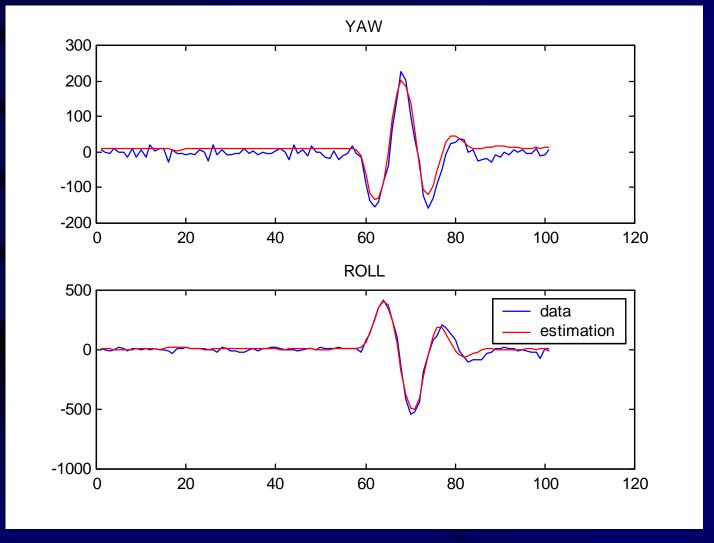

MATLAB Analysis

- Lateral Model based on Flight 3
 - First 4 eigenvalues most important
 - $| \bullet | \lambda > 1$ implies stable
 - Dutch Roll Mode
 - » 0.6625+0.4346i
 - » 0.6625-0.4346i
 - Roll Mode
 - » 0.2200
 - Spiral Mode
 - » 0.9989
 - Fifth and Sixth eigenvalues eliminate drift
 - » 0.8144+0.1174i
 - » 0.8144-0.1174i

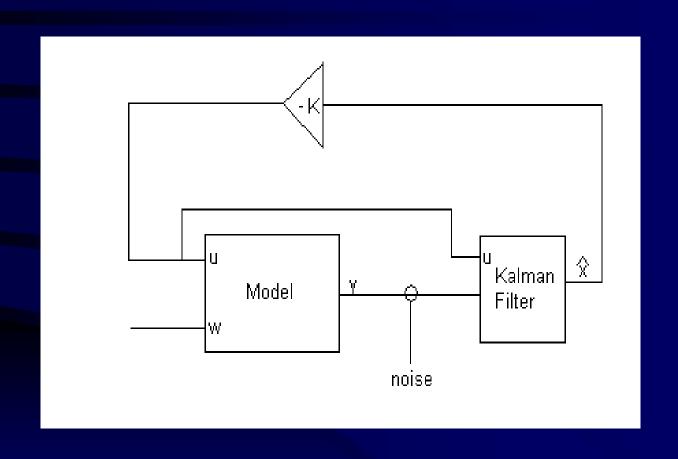

4th Order Model


•4th Order Yaw Model

6th Order Roll Comparison



•First 1000/6000 Samples



•Roll: First 1000/6000 Samples

Flight 3 Post-Kalman Filter Comparison

Control System

GPS

- Pharos iGPS 180 Receiver
 - Laptop version
 - Interface with Tattletale through serial connection
 - 2.2" x 1.9" x .8"
 - -2.4 oz.
 - Sample Rate of 1 Hz
 - Used to eliminate drift from integration of accelerometers
 - 5 meter reported accuracy
 - NMEA-0183 Protocol
 - Water Resistant

The Need for a System Upgrade

- TattleTale:
 - Lacks Memory
 - Lacks Processing Power
 - No Wireless-LAN Capability
- Upgrade Options
 - Pentium Half-Board
 - Compaq iPAQ
 - Casio Cassiopeia

Compaq I-PAQ

Advantages:

- Small and lightweight
- Intel StrongArm (206 mhz)
- PCMCIA Wireless LAN

Disadvantages:

- Not Durable
- Extra Bells and Whistles we don't need
- Expensive and Out of Stock

Casio Cassiopeia

- Advantages:
 - Durable
 - MIPS Processor (150 mhz)
 - Compact Flash Card
- Disadvantages:
 - Larger than an iPAQ
 - No Expansion pack

TattleTale to Processor Communications:

- TattleTale:
 - TPU Channel
 - High speed serial communications
 - Done every time we collect data

- Main Processor
 - Communicates over "COM1"
 - Read thread waits for serial Data
 - Write method sendsbyte array to TattleTale

Protocol for TattleTale to Processor Communications

- Logged Data sent over as array of bytes
- Data sent over in hex
- Data read in as chars, converted to integers
- Each array has a header
- Each element has a delimiter between it

HEADER

PACKET [0]

DELIMITER

PACKET [1]

DELIMITER

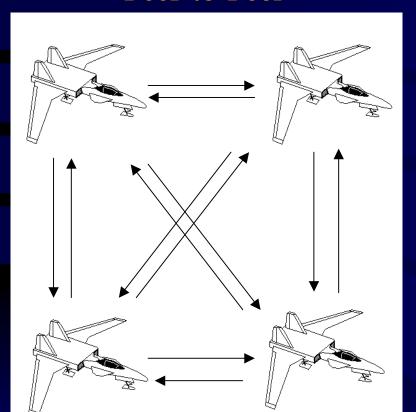
PACKET [11]

End of Packet

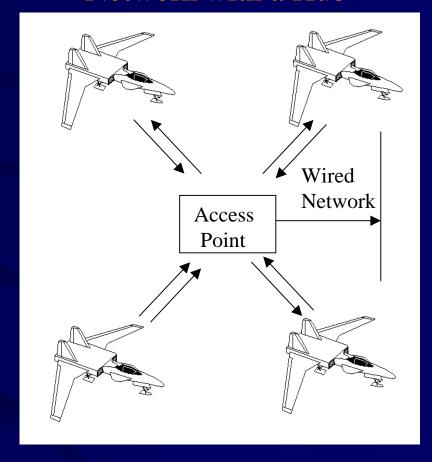
Wireless LAN Communications:

- ORiNOCO PCMCIA card from Lucent
 - 1750 feet 1 Megabit / second
 - Low Power
 - Windows CE Driver
 - Use Compact Flash card adapter from Accurite

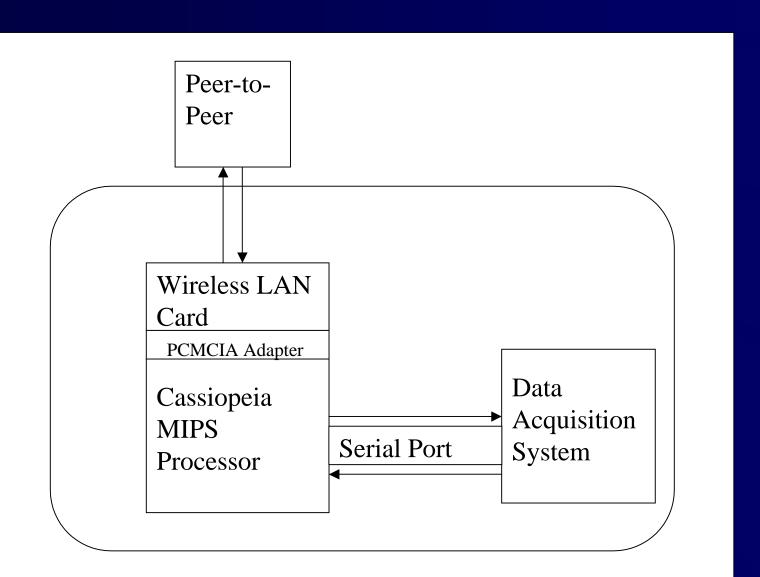
Wireless LAN Configuration


- Works w/ 4 computers in a wired cluster
 - Each Air Plane has its own IP Address
- Tested w/ 2 computers in peer-to-peer wireless network
- Use Java as Programming Language
 - built in libraries
 - portable (Personal Java)

Wireless LAN Features:


- Messages customizable via Java object serialization
- Plane-to-plane communication automatically re-established if plane goes out of range
- TCP/IP Sockets Provide:
 - Resends Lost Messages
 - Error Checking

LAN Configurations


Peer-to-Peer

Network with a Hub

Overall Design of System

What's Next?

- Linear Control
- •Tattletale to Cassiopeia serial Communication
- Integration of GPS System
- Way Point Navigation Control
- •Integration of Wireless LAN System

Special Thanks

- Professor Stengel: for allowing our involvement in this project
- Primoz Skraba: for joining the team
- Olivier Laplace: for helping with the data analysis and teaching me controls
- Proffesors Littman & Kornhauser: for their advice and materials
- George Miller: for generously donating his time to fly our airplane

References

- Robert F. Stengel. http://www.princeotn.edu/~stengel/Phoenix.html Accessed on 8/15/00.
- Robert F. Stengel. <u>Stochastic Optimal Control.</u> John Wiley & Sons, New York, NY, 1986.
- Horowitz, Paul and Hill, Winfield. <u>The Art of Electronics.</u> Cambridge University Press, Cambridge, 1980.
- Martin Ouimet. Design of a Failure Tolerant Control System Using Parity Space Approach. 1998.
- Casio.com http://www.casio.com Accessed on 3/15/01
- Compaq.com http://www.compaq.com Accessed on 12/15/01
- Lucent http://www.lucent.com Accessed on 3/15/01